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The paper addresses boundary electronic properties of graphene with a complex edge structure of the
armchair/zigzag/armchair type. It is shown that the finite zigzag region supports edge bound states with
discrete equidistant spectrum obtained from the Green’s function of the continuum Dirac equation. The energy
levels exhibit the coupling between the valley degree of freedom and the orbital quantum number, analogous
to a spin-orbit interaction. The characteristic feature of the spectrum is the presence of a zero mode, the bound
state of vanishing energy. It resides only in one of the graphene valleys, breaking spontaneously Kramers’
symmetry of the edge states. This implies the spontaneous valley polarization characterized by the valley
isospin �1 /2. The polarization is manifested by a zero-magnetic-field anomaly in the local tunneling density
of states, and is directly related to the local electric Hall conductivity.
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I. INTRODUCTION

Due to the close connection between their topological and
physical properties, two-dimensional �2D� electron systems
have traditionally been in the focus of fundamental research.
From the practical side, device functionalities in the 2D ge-
ometry are of great importance for applications and particu-
larly suitable for lateral electronic architecture. The interest
in these general aspects of 2D electron systems has recently
revived in the light of the experimental success in isolating
individual layers of graphite, preserving the honeycomb
crystal structure.1,2 Such a system—graphene—exhibits el-
ementary excitations behaving at low energies and long dis-
tances as massless Dirac fermions.3,4 Due to its massless
quasiparticles graphene stands out among other 2D electron
systems, which is probably most prominently manifested by
the unconventional quantum Hall physics �e.g., Refs. 1, 2,
and 5–8�, the phenomenon of Klein tunneling9 and fermion
bound states on extended defects such as graphene
boundaries,10–20 to name a few. In particular, understanding
boundary effects in clean and disordered21,22 graphene and
the need for their characterization are among the outstanding
current challenges in the field, arising from potentially prom-
ising electronic applications of graphene ribbons23,24 and
quantum dots.25

One of the reasons why the boundary effects in graphene
should matter was pointed out quite a time ago by Fujita et
al.10 Using tight-binding calculations they predicted a new
branch of quasiparticle states localized on the so-called “zig-
zag” edge. It is one of the most common types of the hon-
eycomb lattice termination formed by two parallel crystal
faces of the triangular sublattices of the honeycomb structure
�see Fig. 1�a��. The properties of the zigzag edge states are
better understood when compared to the edge states in con-
ventional 2D quantum Hall systems.26 Unlike the latter, the
zigzag edge states exist without any external magnetic field
and any excitation gap in the 2D bulk. They are nonchiral:
there is a Kramers’ pair of counterpropagating modes origi-
nating from two nonequivalent nodal points of graphene’s
Brillouin zone �see Figs. 1�b� and 1�c��. The zigzag edge

states have essentially the same origin as the bound states of
massless fermions on domain walls.27 Here the role of the
domain wall is assumed by the out-of-plane rotation of the
“sublattice” spin, which in the continuum limit corresponds
to the zigzag edge.20 Experimental evidence for the bound
states on graphene edges comes from both tunneling12,13 and
angle-resolved photoemission spectroscopies.14

The present study is motivated by the observation that in
experiments one has to deal with finite-length zigzag edges
that represent a section of the graphene boundary sided usu-
ally by two armchair edges.12,13 As the armchair sides do not
support edge states,10,16 one should generally expect quanti-
zation of the propagating modes in the finite zigzag section.
This type of quantization is distinct from the size quantiza-
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FIG. 1. �Color online� �a� Example of a finite-length zigzag edge
sided by two armchair boundaries. A and B mark the sites of the
two triangular sublattices. �b� Geometry of the continuum model for
the system in panel �a�: The zigzag edge at y=0 supports a Kram-
ers’ pair of counterpropagating edge states from K+ and K− valleys.
They transform into each other via intervalley scattering caused
by the armchair sides at x= �L /2. �c� Schematic view of the spec-
trum near the nodal points K+ and K− of graphene’s Brillouin zone
�Ref. 3�.
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tion in zigzag graphene ribbons studied earlier10,11,15,16 be-
cause it can occur on an isolated zigzag boundary, which is
the typical situation in scanning tunneling experiments.12,13

The consequences of such a quantization have not been stud-
ied previously. In the present work, they are addressed within
the Dirac fermion confinement model derived from the lat-
tice structure shown in Fig. 1�a�.

In our approach the time-reversal symmetry and Kramers’
degeneracy of the zigzag edge states comes as a result of an
effective isospin-orbit coupling. The isospin is introduced as
a convenient formal representation for the two nonequivalent
nodal points of graphene’s Brillouin zone. The rotations gen-
erated by the isospin leave the 2D Dirac equation invariant.
We show that this continuous symmetry is broken by the
zigzag confinement, and the edge-state spectrum explicitly
depends on the confinement parameters controlling the
isospin-orbit coupling. The quantization of the edge states is
achieved by imposing effective boundary conditions at the
ends of the zigzag edge �see Fig. 1�b��. They cause the in-
tervalley scattering connecting the incident and outgoing
edge states, which models the armchair confinement. It turns
out that the quantized spectrum contains a zero mode, i.e.,
the state with vanishing momentum and energy. Remarkably,
it couples only to one of the isospin projections, which exists
only in one of the valleys, breaking spontaneously the Kram-
ers’ symmetry of the edge states. This leads to the spontane-
ous isospin �valley� polarization with the total edge-state iso-
spin �1 /2. This mechanism of the valley polarization differs
from the previous proposals.28 We demonstrate that the spon-
taneous symmetry breaking can be detected through the
magnetic-field dependence of the tunneling density of states,
and also find a direct relation between the isospin polariza-
tion and the local electric Hall conductivity.

The subsequent sections give a complete account of our
approach: In Sec. II we formulate the boundary problem for
a finite zigzag edge and analyze it in terms of the discrete
and continuous symmetries of the 2D Dirac fermions. The
Green’s function solution of the boundary problem and the
spectrum of the quantized Dirac fermion edge states are dis-
cussed in Sec. III. Section IV addresses the valley polariza-
tion effects, both spontaneous and induced. The latter is the
analog of the quantum spin Hall polarization. Finally, Sec. V
describes the signatures of the valley polarization in observ-
ables, such as the tunneling density of states and the local
electric Hall conductivity, and contains concluding discus-
sion.

II. BOUNDARY PROBLEM

A. 2D massless fermions, chiral symmetry, and isospin

The two distinct nodal points �valleys� of graphene’s Bril-
louin zone result in a pair of massless Weyl fermions whose
wave functions, �+ and �−, satisfy the matrix equation

�� = H�, � = ��+

�−
�, H = v��p 0

0 U��p�U−1� .

�1�

It is assumed that the Hamiltonian H is diagonal in valley
space �+,−�. The intravalley Hamiltonians are expressed in

terms of the Pauli matrices �x,y,z acting on the functions

�� = ��A�

�B�

� �2�

that have two components due to the bipartite lattice struc-
ture of graphene, with two sublattices denoted as A and B in
Fig. 1�a�; v and � are the Fermi velocity and energy with
respect to the Fermi level, and the quasiparticle momentum p
is confined to the plane of the system.

We further assume that the intravalley Hamiltonians are
related to each other by the chiral symmetry

U��p�U−1 = − �p , �3�

where U is a unitary matrix. In this way we explicitly ac-
count for the generic property of nodal lattice quasiparticles
known as fermion doubling: they come in pairs of opposite-
chirality �Weyl� species that together obey the Dirac
equation.29 We note that in the 2D case the unitary transfor-
mation, Eq. �3�, is always achieved by one of the � matrices.
If, for instance, the system is located in the x ,y plane �Fig.
1�, we have

�p = �xpx + �ypy, U = �z. �4�

The discrete chiral symmetry, Eq. �3�, can be promoted to
a continuous one. Let us introduce another set of the Pauli
matrices �1,2,3, acting in the valley space, and consider the
vector operator

I =
1

2
��1 � �z,�2 � �z,�3 � �0�, �Ik,Il� = i�klmIm, �5�

whose components Ik �k=1,2 ,3� formally satisfy the com-
mutation relations of an angular momentum. It is easy to see
that the Hamiltonian H is invariant under rotations generated
by Ik,

ei�kIkHe−i�kIk = H, H = v�3 � ��p� , �6�

where �k is the rotation angle. This means that the original
choice of the upper and lower components of � �Eq. �1�� as
being the “+” and “−” valley functions, respectively, is not
physically distinguished. One can rather treat them as the
“up” and “down” states of the effective spin �isospin� 1/2.
We will nevertheless keep the original notations �� for the
upper and lower components of �, interpreting them as the
projections

�� = � I0

2
� I3�� , �7�

where I0=�0 � �0 is the 4	4 unit matrix �the direct product
of the 2	2 unit matrices �0 and �0�.

B. Boundary condition for the zigzag edge and broken isospin
rotation symmetry

The zigzag edge is a type of the honeycomb lattice termi-
nation where the outermost lattice sites all belong to one of
the sublattices �Fig. 1�a��. It does not couple the states from
the K+ and K− valleys,10 due to which the continuum bound-
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ary condition for the zigzag edge can be obtained by rather
simple reasoning.16 To be concrete let us assume that the
outermost sites are all of the A type and the next �missing�
atomic row would be of the B type, as in Fig. 1�a�. On the
missing B row one can impose the hard-wall condition
�B��x ,0�=0, while keeping �A��x ,0� arbitrary. In spinor no-
tations �Eq. �2��, this reads

���x,0� = �l����x,0�, l� = �0,0,1� . �8�

This boundary condition admits the generalization beyond
the hard-wall approximation. It is achieved by rotating the
unit vector l� about the normal nB to the boundary �in Fig.
1�b�, nB 	 ŷ�, which is consistent with the requirement for the
normal component of the current to vanish at the edge.18,30

Moreover, the rotation can be made valley dependent: l�

→ l�. Using the four component spinors, we can therefore
write

��x,0� = M��x,0� , �9�

M =
�0 + �3

2
� �l+ +

�0 − �3

2
� �l−, �10�

l�
2 = 1, �l�nB� = 0. �11�

Further restrictions on l� are imposed by the discrete sym-
metries of the problem. As the lattice prototype of our system
has two identical sides �Fig. 1�a��, our continuum model
should inherit spatial parity with respect to coordinate reflec-
tion along the edge, i.e., x→−x. It is the symmetry of the
Dirac equation �1� since the coordinate reflection can be
compensated by the spinor transformation

�P�x,y� = 
��− x,y�, 
 = �1 � �x, �12�

simultaneously swapping both the valley and sublattice
spinor components. However, the boundary condition, Eq.
�9�, does not share this symmetry because M and 
 do not
commute


M
−1 =
�0 − �3

2
� ��xlx+ − �zlz+�

+
�0 + �3

2
� ��xlx− − �zlz−� , �13�

unless there is a relation between l+ and l− such that

lx+ = lx− 
 lx, lz+ = − lz− 
 lz, l = �lx,0,lz� . �14�

These restrictions also make the zigzag boundary invariant
under time-reversal operation �T�x ,y�=
���x ,y�.

We are now prepared to prove that the zigzag boundary
condition, Eq. �9� violates the isospin rotation symmetry.
More specifically, we are talking about the nontrivial rota-
tions generated by the I1 and I2 components of the isospin,
Eq. �5�. Indeed, the matrix M �10� does not commute with
I1,2:

I1,2MI1,2
−1 =

�0 − �3

2
� �− �xlx+ + �zlz+�

+
�0 + �3

2
� �− �xlx− + �zlz−� , �15�

unless l+ and l− satisfy the conditions:

lx+ = − lx−, lz+ = lz−. �16�

These are incompatible with the requirements for the x-parity
and time-reversal symmetry, Eq. �14�. In Sec. III B we dem-
onstrate that the broken isospin rotation symmetry implies an
analog of the spin-orbit coupling controlled by the compo-
nents of the vector l in Eq. �14�.

C. Parity-symmetric armchair edges

We now turn to the boundary conditions at the armchair
sides x= �L /2. They should account for the valley and sub-
lattice mixing specific to the armchair lattice termination10

and, at the same time, possess both the x-parity and time-
reversal symmetry. The suitable boundary conditions can be
written as31

���
L

2
,y� = 
���

L

2
,y� , �17�

with the same off-diagonal matrix 
 as in Eq. �12�. They
meet the requirement of the vanishing of the normal compo-
nent of the Dirac current:

jx��
L

2
,y� = �†��

L

2
,y��3 � �x���

L

2
,y�

= �†��
L

2
,y��1 � �x��3 � �x��1 � �x���

L

2
,y�

= − �†��
L

2
,y��3 � �x���

L

2
,y�

= − jx��
L

2
,y� = 0, �18�

where we have switched to the creation �†�x ,y� and annihi-
lation ��x ,y� operators.

Importantly, the x parity of the problem allows us to re-
duce the boundary conditions, Eq. �17�, to the usual symmet-
ric boundary conditions

��L

2
,y� = ��−

L

2
,y� . �19�

To prove this we first notice that the original function ��x ,y�
and the transformed one �P�x ,y� �Eq. �12�� correspond to
the same solution of Eqs. �1�, �9�, and �17�, and, therefore,
must coincide: ��x ,y�=
��−x ,y�. In particular, at x
= �L /2 we have

���
L

2
,y� = 
���

L

2
,y� . �20�

Comparison with Eq. �17� yields Eq. �19�. For the actual
calculations, we will use the symmetric boundary conditions
modulated by a magnetic phase �
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��L

2
,y� = ��−

L

2
,y�exp�2i�� , �21�

Ex = − �h/eL��̇ . �22�

In this way we account for a weak magnetic field perpen-
dicular to the plane x ,y. If its vector potential is chosen to be
parallel to the zigzag edge, A�y� 	 x̂ and to vanish at y→�,
then at y=0 the phase � exactly equals to the flux through
the strip in units of ch /e. For weak magnetic fields, the spa-
tial variation in � with the coordinate y can be neglected,
while its adiabatic variation with time implies an electric
field along x̂ given by Eq. �22�.

III. DIRAC FERMION EDGE STATES ON FINITE ZIGZAG
EDGES

A. Green’s function of the system

To study the spectral properties of zigzag graphene edges
it is convenient to use the Green’s function approach. The
specifics of its implementation to boundary problems in
graphene is still scarcely covered in literature �e.g., Refs. 17
and 32�. Below we describe in some detail the main calcu-
lation steps leading to the final result given by Eqs.
�36�–�38�.

We begin by introducing the retarded Green’s function
GR�rt ,r�t�� as a 4	4 matrix in space of the valley �isospin�
and the sublattice degrees of freedom whose matrix elements
are given by

G��
R �rt,r�t�� =

��t − t��
i�

	 ����rt���
†�r�t�� + ��

†�r�t�����rt�� ,

�23�

where the brackets �¯� denote averaging with the equilib-
rium statistical operator and the indices � and � indepen-
dently run through all possible combinations of the isospin
and sublattice indices: � ,�=A+ ,A− ,B+ ,B−. As the zigzag
edge �Eq. �9�� possesses the isospin rotation symmetry gen-
erated by I3 �i.e., does not couple the valleys�, GR can be
decomposed into the direct product

GR�rt,r�t�� =
1

2 
�=�1

��0 + ��3� � G�
R�rt,r�t�� , �24�

where �= �1 labels the valleys �i.e., the two isospin projec-
tions� and

G�
R�rt,r�t�� = �GAA���rt,r�t�� GAB���rt,r�t��

GBA���rt,r�t�� GBB���rt,r�t�� � �25�

is the matrix Green’s function in sublattice space. Its time
Fourier transform satisfies the equation

���0 − v��p�G�
R�r,r�� = �0��r − r�� . �26�

In terms of G�
R�r ,r�� the boundary conditions, Eqs. �9� and

�21�, of the previous section read

G�
R = ��l��G�

R�y=0, l� 
 l�, �27�

G�
R�x=L/2 = G�

R�x=−L/2 exp�2i�� . �28�

The solution to Eq. �26� can be sought in the form

G�
R�r,r�� = ��0 +

v�

�
�p�

	 
n�Z

�GAA��kn
�y,y�� 0

0 GBB��kn
�y,y�� � eikn�x−x��

L
,

�29�

where the diagonal matrix elements are the Green’s functions
on sublattices A ,B. They are expanded in plane waves eiknx

with the wave number

kn = �2/L��n + ��, n � Z�0, � 1, . . .� , �30�

given by the boundary condition, Eq. �28�. For
GAA,BB��kn

�y ,y�� one has the ordinary differential equation,

��y
2 − qn

2�GAA,BB��kn
�y,y�� =

�

�2v2��y − y�� , �31�

and the boundary conditions following from Eq. �27�,

�yGAA��kn
= �� ���1 − lz��

�vlx�

− kn�GAA��kn
�

y=0
, �32�

�yGBB��kn
= ��− ���1 + lz��

�vlx�

+ kn�GBB��kn
�

y=0
, �33�

where qn=�kn
2−�2 /�2v2. We seek the solution �finite at y

→�� in the form

GAA,BB��kn
�y,y�� = CA,B�y��e−qny −

�

2�2v2qn
e−qn�y−y��,

where the first term is the solution of the homogeneous Eq.
�31� and the second one is the Green’s function of the un-
bounded system. The coefficients CA,B are obtained from
Eqs. �32� and �33� with the following results:

GAA��kn
�y,y�� =

�

2�2v2qn
�e−qn�y+y�� − e−qn�y−y���

+
�1 + lz���qn + kn� − ��lx�/�v

2�� − �v�knlx� + i0�
e−qn�y+y��,

�34�

GBB��kn
�y,y�� =

�

2�2v2qn
�e−qn�y+y�� − e−qn�y−y���

+
�1 − lz���qn − kn� + ��lx�/�v

2�� − �v�knlx� + i0�
e−qn�y+y��.

�35�

The results of the above calculations can be summarized
in the expression for the full matrix Green’s function,
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GR�r,r�� = 
�=�1,n�Z

� �0 + ��3

2
� � ��0 +

v�

�
�p�

	 �G�kn

s �y,y���0 + G�kn

a �y,y���z�
eikn�x−x��

L
.

�36�

We introduce the symmetric G�kn

s �y ,y��= �GAA��kn

+GBB��kn
� /2 and asymmetric G�kn

a �y ,y��= �GAA��kn

−GBB��kn
� /2 sublattice functions given explicitly by

G�kn

s �y,y�� =
�

2�2v2qn
�e−qn�y+y�� − e−qn�y−y���

+
qn + knlz�

2�� − �v�knlx� + i0�
e−qn�y+y��, �37�

G�kn

a �y,y�� =
kn + qnlz� − ��lx�/�v
2�� − �v�knlx� + i0�

e−qn�y+y��. �38�

In the equations above the denominators vanish at �
=�v�knlx�. To identify this as a pole, we should make sure
that the nominators remain finite as �→�v�knlx�. In this
limit, Green’s function �36� behaves as

GR�r,r�� � −
1

2L


�=�1,n�Z
��0 + ��3� � ��0 + �l��

	
��knlz��

� − �v�knlx� + i0
�y e−�knlz���y+y��+ikn�x−x��,

�39�

and we can see that the pole exists only if the unit step
function ��knlz�� is not zero,

��,n = �v�knlx�, knlz� � 0. �40�

This is the spectrum of the states, decaying exponentially
from the edge y=0 and propagating along x.

B. Edge-state spectrum, isospin-orbit coupling,
and zero modes

Let us analyze the edge-state spectrum, Eq. �40�, in some
more detail. With the requirements of the x parity and time-
reversal symmetry �see Eq. �14�� and for kn given by Eq.
�30�, we have

��,n = sgn�lx����n + ��, ��n + ��lz � 0, �41�

� = hv�lx�/L, n = 0, � 1, . . . . �42�

It is equidistant with the level spacing � and particle-hole
asymmetric because of the restriction �n+���lz�0 �see Fig.
2�. The phase � results in the homogeneous shift of the lev-
els. Let us consider ����1 and neglect the shift in all of the
states except the zero mode n=0,

��,n = sgn�lx���n, �nlz � 0, n = � 1, . . . , �43�

��,0 = sgn�lx����, ��lz � 0, n = 0. �44�

We see that the states with n= �1, . . . exhibit Kramers’ sym-
metry under � ,n→−� ,−n, resulting from the coupling be-
tween the valley �isospin� degree of freedom � and the or-
bital quantum number n. The isospin-orbit coupling
originates from the broken isospin rotation symmetry dis-
cussed in Sec. II B. The coupling constants are given by the
parameters lx and lz of the zigzag confinement. For the hard-
wall zigzag edge �lx=0�, we find the degenerate zero-energy
state ��,n=0. This is in agreement with the tight-binding cal-
culations for zigzag graphene ribbons �e.g., Refs. 10 and 11�
if their results are extrapolated to the case of the infinite
width when the edges become isolated.

The zero mode, Eq. �44�, stands out because it is due to
the coupling between the isospin and the electromagnetically
induced momentum k0= �2 /L��. This mode breaks the
Kramers’ symmetry of the edge-state spectrum since it exists
only for one of the isospin projections �=sgn��lz�, i.e., only
in one of the valleys. In other words, there is a valley polar-
ization effect. It is studied quantitatively in Sec. IV.

IV. VALLEY POLARIZATION

A. Spontaneous polarization

To quantitatively characterize the valley polarization ef-
fect we introduce the local isospin polarization,

p��,r� = −
1


Im Tr I3GR�r,r� = −

2

L


�=�1,n�Z

�

2
Im G�kn

s �y,y� ,

�45�

where Im denotes the imaginary part, the trace Tr of Green’s
function �36� is taken in � � � space, and the function

−4 −2−3 −1 02 30 41

+,nε ε n−,

−4 −2−3 −1 02 30 41

ε+,n ε n−,

n n

a

n n

b

φ > 0

φ < 0

∆

FIG. 2. Edge states in + and − valleys, Eq. �41�, for �a� positive
and �b� negative magnetic flux �. We assume the zigzag confine-
ment parameters, lx�0 and lz�0, so that the edge states exist be-
low the Fermi level as inferred from tunneling spectroscopic mea-
surements �Refs. 12 and 13�. The external magnetic flux shifts the
levels in + and − valleys in the opposite directions such that the
zero mode n=0 �filled circle� occurs only in one of the valleys: +
one for ��0 and − one for ��0. The valley-dependent zero mode
violates Kramers’ symmetry of the edge-state spectrum for arbitrary
small �.
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G�kn

s �y ,y� is given by Eq. �37� of Sec. III. As we are inter-
ested in the edge isospin polarization, the relevant contribu-
tion to Im G�kn

s �y ,y� comes from the pole in Eq. �37�,

pe��,y� = −
1

L
�y 

�,n�Z

�

2
e−2�knlz�y��kn�lz���� − ��,n� . �46�

Note that for the zero mode the step function ����lz� indi-
cates the breaking of the Kramers’ symmetry.

Next we calculate the zero-temperature ground-state iso-
spin density localized at the edge as

ie�y� = �
−�

0

d�pe��,y� , �47�

=−
1

L
�y 

�,n�Z

�

2
e−2�knlz�y��kn�lz���− kn�lx� , �48�

=−
��− lxlz�

L
�y 

�,n�Z

�

2
e−2�knlz�y��kn�lz� . �49�

To obtain the last formula we used the identity ��x���y�
=��x���xy�. The summations over �= �1 and n can be
done exactly,

ie�y� = −
N

2L
�y 

n=−�

�

sgn�n + ��e−�n+��y/�, �50�

=−
N

2L
�y�sgn �e−���y/� −

2 sinh��y/��
ey/� − 1

� ,

�51�

N = ��− lxlz�sgn lz, � =
L

4�lz�
. �52�

In Eq. �51� the first term, nonanalytic in �, is due to the zero
edge mode n=0. Its penetration length depends on the flux �
and diverges at �→0. The second term accounts for the rest
of the edge states n= �1, . . .. It is an analytic function of �.
The edge-state penetration length is measured in units of �
given in Eq. �52�, and the flux is confined to a one-period
interval chosen as −1 /2���1 /2.

We note that depending on the boundary parameters the
factor N �Eq. �52�� takes integer values 0 or �1. The case
N=0 corresponds to edge states above the Fermi level �=0,
for which the zero-temperature occupation number ��−lxlz�
=0. In what follows, we focus on the opposite situation, i.e.,
the edge states below the Fermi level and

N = sgn lz = � 1, lxlz � 0, �53�

which is supported by the tunneling spectroscopy.12,13

Finally, we obtain the total isospin carried by the edge
states as

Ie = L�
0

�

dyie�y� = � sgn �

2
− ��sgn lz. �54�

The zero mode results in the discontinuity at �=0, due to
which in the limit �→0 the total isospin remains finite �half
integer�,

Ie =
1

2
sgn��lz�, � → 0. �55�

This implies that the ground state does not share the time-
reversal symmetry of the original Eqs. �26�–�28� in the limit
�→0. In this sense, the zero mode violates the time-reversal
and Kramers’ symmetries spontaneously, with the resulting
spontaneous valley polarization.

B. Valley Hall polarization

The accumulated isospin, Eq. �54�, contains a linear term
��. It comes from the Kramers’ degenerate edge states with
n= �1, . . . �see Eq. �43��. Such a property of Kramers’ de-
generate edge states was first noticed in the theory of quan-
tum spin Hall systems �e.g., Refs. 33–36�. The recent interest
in these systems is motivated by the principal possibility to
realize a time-reversal invariant integer quantum Hall state in
which the spin Hall conductance is quantized. From Eq. �54�
it is possible to derive the analog of the quantum spin Hall
conductance. Let us calculate the isospin current as the

rate of adiabatic change in the isospin: İe= �̇� Ie /��
=−�eExL /h�� Ie /��, which assumes ��0 and Eq. �22�. The

derivative İe gives the transverse isospin flow in response to
the voltage drop ExL along the edge,

İe = GiHExL, GiH =
e

h
sgn lz, �56�

where the quantum isospin Hall conductance GiH takes the
universal values �e /h. As the zigzag-terminated graphene
supports the edge states without any excitation gap in the
bulk, conductance �56� is hardly the signature of any bulk
topological order.37 We rather interpret it as the measure of
the valley polarization rate at the edges.

V. SIGNATURES OF THE VALLEY POLARIZATION
IN OBSERVABLES

A. Tunneling density of states

The presence of the valley polarization can be inferred
from the magnetic-field dependence of the zero mode. One
of the possibilities is to measure the local tunneling conduc-
tance in the presence of a weak magnetic. At zero bias and
the finite temperature T, the tunneling conductance is propor-
tional to the tunneling density of states

�̄�T,�� = �
−�

�

d��−
� f��,T�

��
����,�� , �57�

which is the convolution of the local spectral density of
states, ��� ,��, and the energy derivative of the Fermi
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distribution function, f�� ,T�. The local spectral density of
states is obtained from the Green’ function, Eq. �36�, as

���,r� = −
1


Im Tr GR�r,r� = −

2

L


�=�1,n�Z
Im G�kn

s �y,y� .

�58�

The edge-state contribution to Im G�kn

s �y ,y� comes from the
pole in Eq. �37�,

�e��,y� = −
1

L
�y 

�,n�Z
e−2�knlz�y��kn�lz���� − ��,n� . �59�

From Eqs. �57� and �59� one can obtain the edge-state con-
tribution to the tunneling density of states as

��̄�T,�� =
1

4LT�� ���e−���y/�

cosh2���

2T
� + 

n=1

�

� �n + ��e−�y/�

cosh2� �n + ���
2T

�
+

�n − ��e�y/�

cosh2� �n − ���
2T

��e−ny/�� , �60�

where � is the level spacing given by Eq. �42�.
Figure 3 shows that the flux dependence of ��̄ is non-

analytic, indicating the spontaneous valley polarization at
���→0. The nonanalyticity is present in a wide range of
temperatures. The reason is that the zero-mode term always
dominates the flux dependence near �=0 because it is linear
in ���, while the rest of the sum varies as �2. As demon-
strated in Fig. 4, for small �=0.01 �red curve� the zero-mode
also dominates the low-temperature behavior of ��̄, showing
a 1 /T increase when T becomes much smaller than the level
spacing �. This feature is due to the fact that for ��1 the
energy of the zero mode �����. In contrast, for the rest of
the sum in Eq. �60� the relevant energy scale is set by the
level spacing �.

B. Local electric Hall conductivity

Although the zero-mode behavior in the tunneling density
of states signals the valley polarization effect, this observable
does not provide the direct access to the accumulated iso-
spin. Here we intend to show that the accumulated isospin is

directly related to the local electric Hall conductivity.
As the first step, we use Eq. �59� to calculate the zero-

temperature ground-state charge density localized at the
edge,

�e�y� = e�
−�

0

d��e��,y� , �61�

=−
e

L
�y 

�,n�Z
e−2�knlz�y��kn�lz���− kn�lx� , �62�

=−
e��− lxlz�

L
�y 

�,n�Z
e−2�knlz�y��kn�lz� . �63�

Again the summations over �= �1 and n can be done ex-
plicitly,

�e�y� = −
e��− lxlz�

L
�y 

n=−�

�

e−�n+��y/�, �64�

=−
e��− lxlz�

L
�y�e−���y/� +

2 cosh��y/��
ey/� − 1

� , �65�

with ����1 /2. The � dependence of Eq. �65� allows us
to take the adiabatic time derivative, �̇e= �̇���e
=−�eExL /h����e, and obtain the following continuity equa-
tion:

�̇e = − �yjy, jy = �yxEx, �66�

where jy is the Hall current density induced by the transverse
electric field Ex, and �yx is the local position-dependent Hall
conductivity given by

�yx�y,�� =
4e2lz

�
y�

y

�

dy�ie�y�,�� . �67�

It is expressed in terms of the edge isospin density given by
Eq. �51�. The existence of the electric current density, jy,
normal to the system’s boundary is consistent with the
charge conservation because at the edge y=0 the conductiv-
ity �yx�0,�� is zero �see also Fig. 5�a��. It also vanishes far
away from the edge: �yx�y→� ,��→0, so that the total edge
charge is conserved: �0

�dy�̇e=0.

T=0.1∆

0 0.2−0.2−0.4 0.4

/ν

T=0.5∆
∆

∆T=1.0

T=0.3

φ

0δν
0.5

FIG. 3. Tunneling density of states, Eq. �60�, vs magnetic flux
�in units of ch /e� at various temperatures; y=0.5�, �0=1 /�L�.
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FIG. 4. �Color online� Tunneling density of states, Eq. �60�, vs
temperature �in units of level spacing �� for small ��=0.01� and
large ��=0.5� flux values; y=0.5�, �0=1 /�L�.
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At distances smaller than the characteristic penetration
length, y��, the Hall conductivity is simply proportional to
the total isospin carried by the edge states,

�yx�y,�� �
2e2 sgn lz

h

y

�
Ie��� =

2e2

h

y

�
� sgn �

2
− �� ,

�68�

showing the same nonanalytic flux dependence as Ie��� in
Eq. �54� �see Fig. 5�b��.

In conclusion, we discuss the applicability of the results
of this paper. First of all, the lattice prototype of our continu-
ous model �Fig. 1�a�� is only one of many possible realiza-
tions of a finite-length zigzag boundary. It is nevertheless
clear that for the honeycomb lattice an armchair/zigzag/
armchair edge structure is rather typical �see, e.g., Fig. 6�.
Independently of its concrete realization, the edge states
must experience multiple intervalley backscattering from the
two armchair regions, resulting in the bound states. The ex-
perimental estimate13 of the typical length of zigzag edges is
of order of 10 nm. This is large enough for the applicability
of our continuum model and, on the other hand, is shorter
than the typical mean free path in graphene, which is re-
quired for the ballistic quantization. For samples with longer

edges, multiple electron scattering due to boundary and bulk
disorder may come into play, as revealed by recent numerical
studies.21,22 The quantization effects studied in this paper are
characteristic to isolated zigzag edges as opposed to the size
quantization in zigzag graphene ribbons. Because the control
over graphene edges is still a serious experimental issue, it
seems easier to obtain graphene samples with isolated zigzag
edges rather than to produce zigzag-terminated ribbons. In
this sense, local tunneling spectroscopy is currently the most
adequate tool for investigating the edge states in graphene.
As for the results on local electric Hall conductivity �67�,
their verification may present a challenging experimental
task. It should however be achievable with increasing control
over the boundary effects in graphene.

ACKNOWLEDGMENTS

The author thanks F. Guinea, M. Hentschel, and M. I.
Katsnelson for discussions. The work was supported by the
Emmy-Noether Programme of the German Research Foun-
dation �DFG�.

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

2 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�.

3 P. R. Wallace, Phys. Rev. 71, 622 �1947�.
4 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 �1984�.
5 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801

�2005�.
6 E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805 �2006�.
7 K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602

�2006�.
8 D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K.

Geim, and L. S. Levitov, Phys. Rev. Lett. 98, 196806 �2007�.
9 For recent reviews, see, e.g., M. I. Katsnelson, K. S. Novoselov,

and A. K. Geim, Nat. Phys. 2, 620 �2006�; C. W. J. Beenakker,
Rev. Mod. Phys. 80, 1337 �2008�.

10 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J.
Phys. Soc. Jpn. 65, 1920 �1996�; K. Nakada, M. Fujita, G.
Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954
�1996�.

11 K. Wakabayashi and M. Sigrist, Phys. Rev. Lett. 84, 3390
�2000�.

12 Y. Kobayashi, K. I. Fukui, T. Enoki, K. Kusakabe, and Y.
Kaburagi, Phys. Rev. B 71, 193406 �2005�.

13 Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and
H. Fukuyama, Phys. Rev. B 73, 085421 �2006�.

14 S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Federov, C. D. Spataru,
R. D. Diehl, Y. Kopelevich, D.-H. Lee, S. G. Louie, and A.
Lanzara, Nat. Phys. 2, 595 �2006�.

15 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
73, 125411 �2006�.

16 L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 �2006�.
17 G. Tkachov, Phys. Rev. B 76, 235409 �2007�.

0.3

0.6

1.2

50 10 15

ζyx ζyx

y=0.1λ
0.9

y λ

φ=0.4

φ=0.25
−0.5 φ

y=0.5λ

0.5

0.5

−0.5

ba

FIG. 5. Hall conductivity in units of e2 /h, Eq. �67�, vs �a� po-
sition and �b� dimensionless magnetic flux.

Zigzag edge

B

AA

B B

A

A
B

B

Armchair edge Armchair edge

Zigzag edge

B

AA

B B

A

A
B

B

Armchair edgeArmchair edge

FIG. 6. �Color online� Other realizations of a finite-length zig-
zag boundary between two armchair edges.

GRIGORY TKACHOV PHYSICAL REVIEW B 79, 045429 �2009�

045429-8



18 A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77,
085423 �2008�.

19 E. V. Castro, N. M. R. Peres, J. M. B. Lopes dos Santos, A. H.
Castro Neto, and F. Guinea, Phys. Rev. Lett. 100, 026802
�2008�; E. V. Castro, N. M. R. Peres, and J. M. B. Lopes dos
Santos, Europhys. Lett. 84, 17001 �2008�.

20 G. Tkachov and M. Hentschel, arXiv:0810.0632 �unpublished�;
arXiv:0803.0713 �unpublished�.

21 M. Evaldsson, I. V. Zozoulenko, H. Xu and T. Heinzel, Phys.
Rev. B 78, 161407�R� �2008�.

22 E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf,
arXiv:0806.3777 �unpublished�.

23 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett.
98, 206805 �2007�.

24 Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E 40,
228 �2007�.

25 L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. H.
Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356
�2008�.

26 B. I. Halperin, Phys. Rev. B 25, 2185 �1982�.

27 R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 �1976�.
28 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat. Phys. 3,

172 �2007�.
29 H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 �1981�.
30 E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16, 2371

�2004�.
31 For more general boundary conditions, see Refs. 18 and 30.
32 P. Burset, A. L. Yeyati, and A. Martin-Rodero, Phys. Rev. B 77,

205425 �2008�.
33 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 �2005�.
34 L. Sheng, D. N. Sheng, C. S. Ting, and F. D. M. Haldane, Phys.

Rev. Lett. 95, 136602 �2005�.
35 B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802

�2006�.
36 M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.

Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
�2007�.

37 This issue requires a separate discussion that will be presented
elsewhere.

DIRAC FERMION QUANTIZATION ON GRAPHENE EDGES:… PHYSICAL REVIEW B 79, 045429 �2009�

045429-9


